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ABSTRACT

The correction to transonic small-disturbance theory induced by the,- .

addition of contaminant particles (e.g., dust) to the gas is analyzed. Two-

phase flow equations governing the particles and inviscid fluid are used. The ...

dusty gas version, a particular limit of the flow equations in which the

volumetric concentration of the particles is small, but the mass

concentrations of particles and fluid are comparable, is employed. In this

setting, a model in which the gas and particles may be viewed as an equivalent

gas with modified properties, is derived. This "generalized gas" model

behaves like a normal gas with a modified value of y (the ratio of specific

heats). Using this model, a simple method of analyzing transonic small-

disturbance theory, by employing a modified transonic sim:'.arity parameter, is

used to account for the effect of the dust.
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SIGNIFICANCE AND EXPLANATION

Many fluid flow problems of interest concern the behavior of a gas which

has been contaminated with small particles of dust. The presence of the dust

can cause significant changes in the flow, and it is important to analyze an

explanation for this phenomenon. This is done by examining a model in which .:

the gas and dust exchange heat and momentum. In the limit of low volumetric

concentrations of dust, but with strong coupling between the phases, the model

equations are closely approximated by the equations for an adiabatic ideal

gas, with modified values of the density and ratio of specific heats. By the

use of similarity transformations of these equations, it is possible to relate

solutions of flow problems for a gas with dust to solutions of corresponding

problems for a clear gas, thus giving an explicit way of calculating the

effect of the dust on the flow. Because of their simple form, the equations

of transonic flow are used to provide an example of this procedure. It is

found that the transonic flow around a thin airfoil for a gas with dust is

equivalent to the flow around an airfoil with modified thickness, at a

different free-stream mach number.
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TRANSONIC SMALL-DISTURBANCE THEORY FOR DUSTY GASES

Donald A. Drewe and Fredrick J. Zeigleree

1. INTRODUCTION

The design of machinery which utilizes or involves the flow of a gas is important in

many practical situations. Often such machines must be operated in an environment where

the qas is contaminated with small particles (dust) which may degrade performance, cause

wear or necessitate filtering, all with undesirable economic consequences.

In order to better understand the flow of both the dust and gas, we examine a model in

which the gas and dust exchange heat and momentum. The equations of conservation of mass,

momentum and energy for each material are simplified by assuming low volunetric S

concentrations of a relatively heavy dust. This set of dusty gas equations is then

further approximated by assuming strong coupling between the materials. The resulting

system of equations is analogous to the equations for the adiabatic motion of an ideal gas,

et4

except that the gas constant y and the density Pm are modified to reflect the heat

capacity and the density of the dust. We further show that this generalized gas supports

discontinuities in properties (generalized schocks) which consist of a shock in the gas,

followed by a relaxation back to equilibrium (both thermal and mechanical) of the dust

particles.

We note that the addition of a moderate amount of dust (0.1% by volume) can increase

the Mach number of a flow by an appreciable amount (- 25%). This could have serious

consequences in operation and/or efficiency in many devices.

Finally, we discuss the transonic small-disturbance theory. It is shown that the

effect of the dust is to modify the flow in such a way that it is equivalent to the flow of

a clear gas at a different Mach number around an airfoil of a different thickness. This

suggests a way to study the behavior of airfoils of different thicknesses (but similar

shapes) may be to add dust to the flow.

*Department of Mathematical Sciences, Rensselaer Polytechnic Institute, Troy, NY 12181
"General Dynamics Corporation, Fort Worth Division, P. 0. Box 748, Mail Zone 2882, 5
Ft. Worth, TX 76101

Sponsored by the United States Army under Contract No. DAAG29-80-C-0041.
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2. IUATTONS or TWO-PMAS3 FWV

The fluid is assumed to be inviscid, and to contain small particles of 'dust' such

that there is no exchange of matter between the phases. Under these conditions, equations

governing the flow of particles and fluid are

amp
a + V*p -" 0 , (2.1a)tp~p

3(1 - lpf

+ V'(1 - S)pfqf - 0 , (2.1b)

OP _-2 + .V -V -aVp + abM(f p (2.2a)

!qf

(1 - a)0f(t- f V~f) - ( -)Yp + GbM(Op - f ) f (2.2b)

"- VsOp" - p~aeq" + ebH(qf - qp*p+ GILN(?f - Tip) , (2.3a)

(1 a t + q;V( + )] b

-V V--q-p.+q -b4(f - +).j + ( f) T (2.3b)

where 2.1, 2.2, and 2.3 are equations of conservation of mass, acmentum, and energy for the

fluid), a is the dust volumetric density - dust volume/total volume, p denotes the

phasic density (for the particles, pp dust mass/dust volume), p is the pressure, and

e is the internal energy per unit mass.

In addition, equations of state are needed for both phases. The dust is assumed to be

incompressible

Op const 1 (2.4)
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for the fluid, the ideal gas law

p =R'P ~f (2.5)

holds. The particles are assumed to be calorically perfect, so that

E - C (p)
p v p

(P)where c denotes the constant volume specific heat of the particles; and, for the gas,
V

ef (UC Tf+ P/Pf (2.6)

The terms on the riqht of (2.2) and (2.3) involving bM and %L, reflect momentum and

energy transfer between the particles and gas. For b,, we assume the general form

bM ~ C I~~pI . 1~~ (2.7)

*where cD is the drag coefficient, and a is the effective particle radius. If the

* relative velocities between the two phases are small,

cD - 24/ns (2.8)

where

Re~ (2.9)
* . f
U being a reference velocity. Then

bN 2 PfVf (2.10)

a
according to the Stokes law.

Zxpressed in terms of the Musselt number Nu, the heat transfer coefficient H.is

H3  j 'ta* (2.11)I

where K is the coefficient of heat conductivity. Bly including the Prandtl number

P 1A 1i , this may be written
Y f

H Nu Prb . (2.12)

3 - N



3.

The dusty gas limit of the previous two-phase flow equations corresponds to the limit

a << 1  P << Pp and ap - P In order to exhibit this limit explicitly we first
fp p

scale the variables and put the equations into nondimensional form.

Thus, we assume the problem contains a typical lenqth scale L, velocity scale U,

gas density scale r, temperature scale Too and volumetric concentration scale A. We

then set

x - X/L

t - tU/L (3.1b)

-(*X As(x) (3.2a)

Pf(Xrt) = r ,f(Xt) (3.2b)

qPXt Uq (Xt) (3.2c)

af(xt) - f f(x,t) (3.2d)

plc,t) x r2p(xt) (3.2e)
2; A

C (xt) = U £(xt) (3.2f)P

ppCf(xt) = O~(Xt) (3.2;)

T =t T 0 T;x t (3.2h)

f (xst) - T 0T f (xt) .(3.*21)

The following dimensionless combinations will be used:

S= r/P (3.3a)

c = rU/bN L (3.3b)

2
h - H T /b U (3.3c)

MO M
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Y =R'T /U 2(3.3d)

cc(P) T /U2 (3.3e)
V 0

V T/ (3.3f)

The dimensionless two-phase flow equations are

aa
+ ;* (q )=0 (3 .4a)

-at

A)f
+ V(I M) f q f=0 (3.4b)

at

+ -- q )35

+ qp*V (C +jq)]=

-sVcu-pq -spVL* q + -aq qI +MQT -T )(3.6a)
p A pp CA f p

(1-~~ A)[ 2 f ~~ ~
at f

AaY1 )-pq~ A;;.* ^ (q qp )qp + (T - Tf) (3.6b)

fp f P p f

The dusty gas limit corresponds to A *0, s + 0 (since p < p const implies

r/p - a << 1). with f =A/S remaining fixed. The dusty gas formulation is

+ V(mgo )-0(3.7a)
at

at

-5-.



aap Cp 3.8a)

a; +;Y~ij(f q qp)

+ qf V.;+ =- + -1 a(+q qf)( b

;f qV cq) f -~~ f- (3.8b)
at

1 2
a ;2)1 ( qf) , - 1 - f qp q f(T T 0 (.a

+ 2 ~ YC

+Vp + - 1.t ; -)] ).(.b

The equations of state take the form~a

pP WT (3.10)

p p

C =cT~+P/Pf(3.12)

ill
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4. GENERALIZED GAS MODEL

Let us see the effect which the effective particle radius, a, has on the dusty gas

*" equations. By using the Stokes drag formula, we may write

2
9 • (4.1)

9fA Yf A P
f f%*~

Thus, for sufficiently small particles, c will be small. In fact, for many flows

Re a and a/L are small, but A is also small. The rest of our discussion will be

limited to the regime C << 1.
. .

For this case, inspection of equation 3.5 shows that qf a qp (we now drop the carets

for convenience) unless the accelerations are large. This suggest a model which we term

+
the generalized gas model, which has the property that qp = qf + O(£), except in places

where the flow fields change rapidly. We shall call these regions of rapid change

generalized shocks. As we shall see, this model is analogous to a gas with changed

properties.

Consider the flow fields c, q,q etc. as functions of x, t, and C. In the
p P

generalized gas model, we consider a limit of the dusty gas equations in which c + 0.

with x, t held fixed. Away from generalized shocks, we therefore consider an expansion

(0) (1)
a(x,t;c) - a((x,t) + ca x,t) + ... (4.2)

with similar expressions for the other flow quantities.

Substituting these expressions into the dusty gas equations and equating terms of

equal order to zero qives the following: ( )-

+(0) +(0) -qf q qp =q (4.3) '.-

(0) (0)T T 0  T (4.4)Tf P

a(0) 2+
a + q 0 (4.5)

a + Vp q- 0o (4.6)

-7-
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fqt q Vq) qf (47)
at p

(0)(2 + , . V (0) (0)(+(1) (1)
p qq) 7p + C

at q p q qf (4.8)

I 2

f [-a-- 
+  

V(cT ( - qp )q + h(T f T p (4.9)

i(o) + 1 2 0
(O)f f 2~ (0) + =

p f at + q.V (Cf 2 q

-Vp(0 (0q q, ).q + h ( )  Tf))

(0) (0)(f rpf T (4.11) .

C (0) ;T + (0) (4.12)
f +P 'f

This model allows us to derive the equations needed at the lowest order. Adding

(0)
a times (4.7) to (4.8) yields

(0) (0)f (a +~ (0)
(0) + (0) t q q - (4.13)

A similar combination of (4.9) and (4.10) gives

(0)r'T .'VT] + a( f[L= + q"VcT+

+ (0f +ra at + .VT(q] q+

. (0). (0)
+ (0)(raP /P f + . (01) (0)1 = _ (0)+

+ O) at + q.V(p /0 f •V.p ( (4.14)

Additionally, (4.5) and (4.6) may be combined as

(0) (0)
a of + a f (o) (0) + m

Votf)q o 0 + V.q (4.15)

-8-
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whe P. + a(0) f is the mixture density. Using (4.5) and (4.6) we obtain

S10) + 0 10
a - n(-i-T ) + q 0Vn,. /f ) 0 (4.16) •

Pf

0 (0)
Therefore a /pf is constant for a fluid particle.

The energy equation may be rewritten in order to yield further information. First, -.

taking the dot product of q with (4.13) shows that

1 2

(0) (0) ( + q) 2 1 (0)
(f + f)[ at + ( q2 )] _q.Vp (4.17)

ft

Then, from (4.14), we are left with

(0) (0)

(01 () +T (0)[fTJ + at + qT +q / -O q (4.18)

With the expressions (4.6) and (4.11), this yields

(0)

(0)( (0) (0)
(Pflc + aOfc + P1  r) LL- + VT rT[ 5  + +yp] (4.19)

Therefore, following a fluid particle,

T Const( ) (4.20)

where

a f c

(0 (0 + (0)c/o f Pf c + rY(0) (0) (0)4.21 L
c + r + a fc/P + O.lf cf ____1_+__

fC/Pf ~ (0)
Pf c + r

is constant on each streamline.

KL



sq S

(0) (0) (0) (0)
Since of + a f - p., and a /Pf is constant following a fluid particle,

(4.20) may be written

- Conet. * "I  (4.22)TM

(0) (0)
where the constant in (4.22) is 1 + a f/O times the one in (4.20).

(0) (0)
We now assume that a /0f is the same for all streamlines at t * 0, and that we

have a constant value of a /f far upstream for all time. Then, ; and the constant

in (4.22) are constant for the whole flow field for all time. Dropping the (0) super-

script for the pressure, the generalized gas model is

m+ m= 0 (4.23)

-I t + -7p (4.24)

YST

P/Po" (am/00)Y (4.25)

where 00 and p0  are constants. Thus, a dusty gas with small dust particles behaves

like a gas with a modified y. We emphasize that this derivation assumes that we are not

near a shock.

We note that the speed of sound for a generalized gas is given by

(0) (0)

a ' -f m ( o !_f aI
dom IP TOM P(0 )J -- a

(0) (0)where a is the speed of sound in the clear gas. Moreover, since pm Pf +a f,
- (0)
YPOf . 1 L
TO yr (0)"

m a f
+

(0)
Of

-10-



5. GENERALIZED SHOCK STRUCTURE

In order to derive expressions which measure the correction to transonic small-

disturbance theory caused by the addition of dust to the gas, we must examine how shock

waves fit into this framework. The generalized gas equations (4.23)-(4.25) are not valid

in regions of rapid change. In this section we shall derive equations valid for such

regions, for the purpose of obtaining shock relations which can be used with the equations 0

of the previous section. We assume that the conditions for a dusty gas are not violated in

the shock, so we shall start the analysis by using (3.9)-(3.12).

We consider only planar shocks, with the generalized shock location given by

x = x(t) , (5.1)
s

y, z arbitrary.

A coordinate system fixed in the shock will be used, with the positive x-axis in the

direction of net flow through the shock. Setting X = x - xs(t), Y =y, Z =z, T - t

transforms the dusty gas equations to

3a aQu) (aV ) 3(aw )

iT3- + - a + R -'-'ay + z -P 0X (5.2)

3Pf + ap f (5.3)3T ax ay az =

3 y + w z t(U f3- Up) - -z (5.3) -. -

3T p pY p dt

av av av av 1
._+ U 0 + V P + W - " (V - V ) (5.5)

aT p ax p aY p3Z fe f p

aw aw 3w aw
~+U + V ... + V (W ) (5.6)at p ax p ay + p az fe fW p

2aa! U U d x
Pf3 + Uf + Vf + Wf ~T =a (U -U)- Pf -~ (5.7)

Uf a f Uf a d 2x

av av 3V av
P +Uf- + V f + W~ f -a+ (V-V )(5.8)
f T f x f f -Z a

-A



Dw 3w Dw w .- -.-

P f U1  f + Vt f*-+v + + (V - (5.9)

3T 3T DT BT
- +V 2 (Tf - T) (5.19)

T U p + + a? -p F f "

Inth aov, f = pf --- T Vp f +pf Wp -t + Wpf.Tecoeof

the details the shock structure ye examine a distinguished limit of

thee qutinsmost aprpiaefr regions 01 rapid change. In order to get the richest

P " 0(5.12)

SapU

U -U + (U - U) (5.14)

U2-- i- (v, - v) (5.15)

C f pS f p p f

dx
ithabvUP .U - dt a. )~ (5.16)f~*Th coceo

pfU' ;[a(Up- U) (5.17)

equatiosa(W - w) (5, 19)

p 0 5.2

-12-



cu -2  h (T~ T) (5.20)

f4 f a (3 U 2 + V+V 2 + (W w + ha (T T )* (5.21)
* fc' - -p T- f(U - f, p fV p p fw

* Boundary conditions are given as:

. dxU t

KTf#T +Ti + MI; Pt + Pt as +

Fl Let us consider the possibility that these equations have a shock solution, that is, a

discontinuous solution which satisfies appropriate jump conditions. Equations (5.12)-

(5.20) give rise to the jump conditions

Ko (1] 0 (5.22)

P U] =0 (5.23)
ftf

2
(U I=0 (5.24)
p

tU V 1 0 (5.25)
p p

[U w 0 (5.26) '
(pp + pI 0 (5.27)

(p UrV I =0 (5.*28)

(pfU WI - 0 (5.29)

tcUI T 0 (5.30)

IP cu T~ + PUI 1 0 (5.31)

-13-
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Conditions (5.22), (5.24), (5.25), (5.26), and (5.30) show that the particle

properties are continuous across a shock. The other conditions show that the gas

properties are not affected by the dust properties in the shocks it is a "claesical" gas

shock.

Using (5.23) in (5.28). (5.29) easily shows that Vf, Wf are continuous. With

V pf and Wpf continuous across the shock, and being governed by (5.15), (5.16), (5.18),

(5.19) in the rest of the transition region, this combined with the boundary conditions

shows that V - Vf and Wp - Wf throughout the generalized shock.

The remaining differential eauations describe the evolution of the gas and particle

flow on the length scale E. The smooth evolution must be on the E-positive side of the

shock, since the solutions will be well-behaved. as F 0.

Let us now examine the transition region, the section behind the shock where the

discontinuity in U. has caused Up * U f. We asame that the actual shock is at F - 0.

From (5.12)
dx

O p(t) a 0+U0+ a ( +- - -) . (5.32)
p p p dt

0+ 0- 0+ 0-
But particle properties are continuous, so a . , U . , and

p p

dx dx
CL- 490 0  

= ' (5.33)

Using (5.13) we may similarly derive

dx dx
, + .- (S.34)

Therefore a / a /Of# and

dx dx

-14-
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To get the total momentum, we add af times (5.14) to (5.17), which yields

2 2
afu + pfUf + p (t) • (5.36)

By an argument similar to the one leading to (5.35) we find

dx 2 dx 2
+ ) + - 0 u - ) + p + (5.37)

M( dt a d

By taking a linear combination of (5.20) and (5.21), and using (5.14) and (5.17) on

the resulting expression, we nay derive the energy equation

i 3 3
efcUT + pfcUfTf + GfUp/2 + PfUf/2 + p = e(t) • (5.38)

The corresponding jump condition is

dx dx 3 dx

(a fc + O~c)(u 7L- I) - - - -I) + p-u - -I
t T a( dt d

- (a fc + c - + 1,C - + p C - d-&T + (5.A)
dt m dtdt~

Two equations cannot be explicitly integrated across the generalized shock. They can

be taken to be
dU

U I (U - (5.40)

dT

cU = h (T- T ) • (5.41)p dt f p

We note that (5.40) and (5.41) govern the non-equilibrium evolution of the velocities

+ +
and temperatures back to the equilibrium values U and T . For the generalized shock

structure we describe, it is sufficient that these equations imply U P Uf and T + T

as •.in.

The jump conditions (5.35), (5.37), and (5.39) show that for a generalized gas, the

generalized shock relations are precisely those for a gas with equivalent properties. The

shork thickness if 0().

-15-
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6. SMALL DTSTRUBDANCE THEORY

with the derivation of the generalized gas model (4.23)-(4.25) and generalized shock

conditions (5.35), (5.37), and (5.39), we have achieved considerable simplification of the

- original problem. The dusty gas may be regarded as an equivalent gas with a modified value

of Y. Assuming that we have potential flow, it is therefore possible to formulate a
small-disturbance theory for transonic thin airfoils in dusty gases, analogous to that in

(2]. The transonic similarity parameter for this case is a function of the new value of

y. It will be shown how this modified similarity parameter is related to the usual one

for the case of no dust, so that a method of estimating the effect of the dust on the usual

small-disturbance theory may be achieved.

We formulate the boundary value problem for a thin airfoil, in a dusty gas and

travelling in the transonic range, as follows

Y

o ySF~ Wx 1 x]

Figure 6-1

As shown in Figure 6-1, the free-stream velocity is U (in the x direction only),

where the coordinates x, y have been normalized with respect to the airfoil chord. The

function F which defines the airfoil surface satisfies max IF (X) - F W(xI - 1.

xetO ,1 
. .

We assume that a potential * exists, so that the flow components are given by

- (U + u,v) - Ue x + q (6.1)

where u,v, represent the distrubance velocities, and a is the unit vector in the x.x

direction.

-16-
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The potential 0 satisfies the system

2 2
(a - 2) - 20 9 4 + [a 9 )0 = 0 , (6.2)

x XX xyxy y yy

.2 -2
- 2 a 2

* ---- + (6.3)
¥r- y- I

Here, is the local speed of sound in the dusty gas, which we are going to distinguish

from a, the sound speed in the gas without dust.

* satisfies the boundary condition

* (x,Pu (x)
y uL - 6, (x) (6.4)

of tangent flow along the wing, and

0* U as x.-, (6.5)X

corresponding to uniform flow for upstream. We also assue that the Kutta condition

holds: the flow leaves the trailing edge smoothly.

Under the condition of small distrubances, we may derive a simpler, approximate

equation for the problem. This derivation is achieved through a limit process expansion

for 0, based on the limit process * 0, with x,y . 61/3y, and K 2 fixed as
a 2/3 fxda

S*1. It has the form

*(x,yl6) - U(x + 6 2 3t(x,y) + ... ( . 16.6)

Then * satisfies

(K - 1y + 1)#)x)xx + - 0 (6.7)

and the boundary conditions

) ,(x) 0 < x 1 (6.8)

Xy 0 as X + (6.9)
xy

In this context,the Kutta condition may be written as

x =E 0, (6.10)
• .

where TE means trailing edge.

-17-
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Additionally, shock jump conditions must be imposed in order to have a complete

problem for *. The conditions may be derived from the continuity of the transonic mass
AP

flux vector

Pq " -U(x (1 + 6 (;* 2 .. . (6.11)

If the shock surface is given by

S(x,y) -x q (;) -0

the jump condition is

2i I. - t ],;,(y) - 0 1 6.12)(x 2 y ".

Furthermore, there is no jump in the tangential component of velocity across the shock,

which may be quaranteed by imposing

e . 0 . (6.13)

The form of (6.7) shows that for two flows at different transonic Hach numbers, but

with the same values of K, these two flows will be geometrically similar (the difference

will be that the 'size' of the disturbance will be determined by different factors of

An analogous similarity law holds for the gas alone, governed by the similarity

parameter K. Both of these similarity laws relate families of flows, for different values

of the displacement thickness at a corresponding Mach number.

We wish to see how the change in the ratio of the specific heats for the dusty gas,

y, affects the flow. This will be done by finding a correspondence between the

similarity parameters in the two cases.

We shall develop the correspondence by transforming the boundary value problem (6.2)-

(6.9) for the dusty gas into a problem for the gas without dust.

Let *(K) - * be the solution operator for the dusty gas boundary value problem. By

defining

- -

y/yf y (6.14b)

* = ca* (6.14c)

S( _+ + 31 1/3
where - 1) + and 6 - 8, we see that (6.7), (6.8) become

-18--
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(K - (~ + 1). )* + * = 0 , (6.15)

;*(x,) - r,,(x), 0 < x < I . (6.16)

The other boundary conditions, (6.9) and (6.10), transform readily in the correct manner.

The shock jump condition (6.12), since it can be derived from the divergence form of (6.7),

imposes no additional restriction upon transformation by (6.14). This is also true for

(6.13). pe

Therefore, under (6.14) the entire problem for *(x,y;K) transforms to the

corresponding problem for *(x,y;K), which is the case of the gas without dust. Comparing

(6.7) and (6.15), we conclude

Now, the similarity parameter K for the new problem is of the form

-2 -2 -2

P-/3 (U3 )2/3 -2 2/3 (

from which we conclude N -M1 . Combining (6.17) and (6.18) gives

*(K:) -*(o, iw ) . (6.19)

This relation in equivalent to 0
- - -2-*(X,yI,) - u*(x,yW K) . (6.20)

To complete the details, we note

- ;t
W 2 .. .2K 2/3 where aw- (0) a

+(1 (0)
Of

from Section 4, so that

(0)

Y( + 2(0)
; 'C" g(0) 4 1

P| N
2

=2/3 (6.1)

4 where y is given by (4.21).
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Thus, we see from (6.20) that the small disturbance problem for a dusty gas is

equivalent to one for a clear gas, with a modified amplitude of disturbances, a changed

wing thickness ratio and similarity parameter.

(0) (0)The transformation parameter w, as a function of a f/Of * is shown in Figure

6.2 for c/(c + r) = 1.0, which is a representative value for many materials.

=1.29

S1.0

0.5

0.0-

(0). (0)
0.0 1.0 2.0 3.0 (0 Pf

(0) (0)
Figure 6.2. w vs. a 0 f(

Thus, for example, a dusty flow with a mass loading of 2.0 corresponds to a value of

W of 1.21, which means that if the airfoil has thickness 6, the flow is equivalent to

that of a clear gas around an airfoil of the same shape, but of thickness

w =36 - 1.778. The equivalent similarity parameter i is w -- 2; 0.68;. This

implies that for a given airfoil, of thickness 60• the solution in a clear gas for

3thickness 81 - w 6 at similarity parameter K1  can be obtained from the solution in a
1 0

1/3dusty gas with a value of w equal to w . (81/80), and similarity parameter

2 (0) (0)
K W R K The loading a f/Of , can be obtained from

-20-



* . (6 /60)1/3 + 1 2 1/3
10 y + 1)

so that 6 S
- -1 + I (y + 1)

But

(0)

a f +c+r 61

(y + WTI-+

a ( ) f - c 
+  

(0) 1 c

• 6

a(Of  2 (y + 1) -1

" 6 10
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